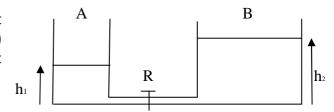
TD Statique des fluides

Exercice 1 : Liquides non miscibles en équilibre

Deux récipients A et B, de sections respectives $S_1 = S$ et $S_2 = 2S$, sont reliés par un tube (de section négligeable) comportant un robinet R. Les bases de A et B sont situées sur un même plan horizontal.



1) Le robinet R est fermé. On verse du mercure, de masse volumique μ , jusqu'à une hauteur h_1 = h dans A. Du mercure est également versé dans B jusqu'à la hauteur h_2 = 3h/2. Le mercure est considéré comme un fluide homogène incompressible.

Exprimer en fonction de h les déplacements algébriques x_1 et x_2 des surfaces libres de A et B après avoir ouvert le robinet R.

2) Une hauteur h' d'eau, de masse volumique μ_0 , est ensuite versée dans A. L'eau et le mercure sont deux liquides non miscibles (le mercure est plus dense que l'eau). A l'équilibre, il existe une dénivellation D entre les surfaces libres de A et B.

Déterminer D en fonction de h', μ et μ_0 .

Exercice 2 : Calcul direct des forces pressantes

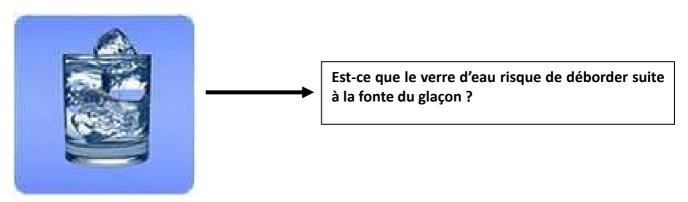


On désigne par P_0 la pression atmosphérique par ρ la masse volumique de l'eau et par e la dénivellation entre les 2 surfaces de l'eau de part et d'autre du barrage.

Déterminer l'expression de la résultante de la force pressante s'exerçant sur le barrage - longueur L, hauteur h - représenté ci-contre.

Exercice 3: Poussée d'Archimède

On prend un verre dans lequel on plonge un glaçon. On remplit ensuite le verre d'eau à ras bord.



Que se passerait-il en remplaçant l'eau par de l'alcool (de densité inférieure à 1) ou du sirop (de densité supérieure à 1) ?

Exercice 4: Ascension d'un ballon-sonde dans l'atmosphère isotherme

L'atmosphère est assimilé à un gaz parfait (masse molaire M_{air} , masse volumique ρ_{air}) en équilibre isotherme à la température T_0 . Le champ de pesanteur garde une valeur g constante.

Un ballon-sonde est constitué d'une enveloppe remplie d'hélium (gaz parfait de masse molaire $M_{\rm He}$ et de masse volumique $\rho_{\rm He}$), dont le volume V ne peut pas dépasser une certaine valeur V_1 , et à laquelle est attachée une nacelle. La nacelle, l'enveloppe et les accessoires ont une masse totale m, et le volume de la nacelle est négligeable devant V. Il y a constamment communication entre l'air atmosphérique et le gaz du ballon, ce qui assure l'équilibre mécanique et thermique entre les deux fluides.

- 1) Faire l'inventaire des forces appliquées au ballon-sonde et exprimer la résultante \vec{R} de ces forces en fonction de m, g, V, ρ_{He} et ρ_{air} . Quels sont les termes qui peuvent varier en fonction de z ? Exprimer \vec{R} en fonction de m, g, M_{He} , M_{air} , et n_{He} (quantité molaire d'hélium contenue dans le ballon).
- 2) À quelle condition le ballon pourra-t-il s'élever au départ ? En déduire la masse $m_{\rm max}$ maximale pour un volume initial V_0 en fonction de V_0 , $M_{\rm He}$, $M_{\rm air}$, R, T_0 et P_0 (pression à l'altitude nulle de départ). Calculer $m_{\rm max}$ pour V_0 =4000L (ballon de 1m de rayon environ), T_0 =293K, P_0 =1 bar, R=8,3 J·K $^{-1}$ ·mol $^{-1}$, $M_{He}=4g.mol^{-1}$ et $M_{air}=29g.mol^{-1}$.
- 3) <u>Phase à masse constante</u>: Le volume du ballon ne peut dépasser une valeur notée V_1 sans que celui-ci n'éclate. Montrer que cela implique l'existence d'une altitude maximale atteinte par le ballon, notée z_1 , que l'on exprimera en fonction de $H = \frac{RT_o}{M_{air}g}$, V_1 et V_0 .
- 4) <u>Phase à volume constant</u>: Au-delà de l'altitude z_1 , le ballon possède une soupape qui lui permet d'évacuer du gaz à volume constant. Déterminer l'altitude z_2 d'équilibre (appelée plafond) du ballon-sonde en fonction de $H = \frac{RT_o}{M_{air}g}$, m, m_{max} , V_1 et V_0 .

